The 3-Rainbow Domination Number of the Cartesian Product of Cycles
نویسندگان
چکیده
منابع مشابه
On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles
Let G be a graph. A 2-rainbow dominating function (or 2-RDF) of G is a function f from V(G) to the set of all subsets of the set {1,2} such that for a vertex v ∈ V (G) with f(v) = ∅, thecondition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled, wher NG(v) is the open neighborhoodof v. The weight of 2-RDF f of G is the value$omega (f):=sum _{vin V(G)}|f(v)|$. The 2-rainbowd...
متن کاملOn the Signed Domination Number of the Cartesian Product of Two Directed Cycles
Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ( ) { } − : 1,1 f V D → is called a signed dominating function (SDF) if [ ] ( ) 1 D f N v − ≥ for each vertex v V ∈ . The weight ( ) f ω of f is defined by ( ) ∑ v V f v ∈ . The signed domination number of a digraph D is ( ) ( ) { } γ ω = min is an SDF of s D f f D . Let Cm × Cn denotes the cartesian produ...
متن کاملTotal Domination Number of Cartesian Product Networks
Let denote the Cartesian product of graphs and A total dominating set of with no isolated vertex is a set of vertices of such that every vertex is adjacent to a vertex in The total domination number of is the minimum cardinality of a total dominating set. In this paper, we give a new lower bound of total domination number of using parameters total domination, packing and -domination numbers of ...
متن کاملThe reliability Wiener number of cartesian product graphs
Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...
متن کاملThe domination number of Cartesian product of two directed paths
4 Let γ(Pm2Pn) be the domination number of the Cartesian product of directed paths Pm and Pn for m,n ≥ 2. In [13] Liu and al. determined the value of γ(Pm2Pn) 6 for arbitrary n and m ≤ 6. In this work we give the exact value of γ(Pm2Pn) for any m,n and exhibit minimum dominating sets. 8 AMS Classification[2010]:05C69,05C38. 10
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8010065